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ABSTRACT Vibrio parahaemolyticus naturally occurs in brackish and marine waters
and is one of the leading causes of seafood-borne illness. Previous work studying
the ecology of V. parahaemolyticus has often been limited in geographic extent and
lacked a full range of environmental measures. This study used a unique large data
set of surface water samples in the Chesapeake Bay (n � 1,385) collected from 148
monitoring stations from 2007 to 2010. Water was analyzed for more than 20 envi-
ronmental parameters, with additional meteorological and surrounding land use
data. The V. parahaemolyticus-specific genetic markers thermolabile hemolysin (tlh),
thermostable direct hemolysin (tdh), and tdh-related hemolysin (trh) were assayed
using quantitative PCR (qPCR), and interval-censored regression models with nonlin-
ear effects were estimated to account for limits of detection and quantitation. tlh
was detected in 19.6% of water samples; tdh or trh markers were not detected. The re-
sults confirmed previously reported positive associations for V. parahaemolyticus
abundance with temperature and turbidity and negative associations with high sa-
linity (�10 to 23‰). Furthermore, the salinity relationship was determined to be a
function of both low temperature and turbidity, with an increase of either nullifying
the high salinity effect. Associations with dissolved oxygen and phosphate also ap-
peared stronger when samples were taken near human developments. A renewed
focus on the V. parahaemolyticus ecological paradigm is warranted to protect public
health.

IMPORTANCE Vibrio parahaemolyticus is one of the leading causes of seafood-borne
illness in the United States and across the globe. Exposure is often through consum-
ing raw or undercooked shellfish. Given the natural presence of the bacterium in the
marine environment, an improved understanding of its environmental determinants
is necessary for future preventative measures. This analysis of environmental Vibrio
parahaemolyticus is one of only a few that utilize a large data set measured over a
wide geographic and temporal range. The analysis also includes a large number of
environmental parameters for Vibrio modeling, many of which have previously only
been tested sporadically, and some of which have not been considered before. The
results of the analysis revealed previously unknown relationships between salinity,
turbidity, and temperature that provide significant insight into the abundance and
persistence of V. parahaemolyticus bacterium in the environment. This information
will be essential for developing environmental forecast models for the bacterium.
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Vibrio parahaemolyticus is a Gram-negative, halophilic, and facultative anaerobic
bacterium that is autochthonous to estuarine environments. While only some

strains of the bacterium are pathogenic, it is one of the most common agents of
seafood-borne illnesses, causing an estimated 34,644 domestically acquired illnesses
each year in the United States (1). Symptoms of infection are typically restricted to
gastroenteritis, although life-threatening septicemia can also occur. The annual inci-
dence rate of V. parahaemolyticus infections has increased, with the U.S. Centers for
Disease Control and Prevention’s Foodborne Disease Active Surveillance Network
reporting an increase from 0.15 per 100,000 people in 1996 to 0.42 in 2010, and the
Cholera and Other Vibrio Illness Surveillance system reporting an increase from 0.09 to
0.28 in the same time period (2). This trend is expected to continue as water temper-
atures rise globally due to general climate warming, particularly in high latitude bodies
of water such as the Chesapeake Bay. This warming will likely expand the spatial-
temporal extent of the bacterium in the environment as well as potentially increase the
risk of infection (3–6).

Exposure to V. parahaemolyticus most frequently results from the consumption of
raw or undercooked shellfish. Bivalve mollusks, through their filter-feeding behavior,
are able to accumulate the bacterium before they are harvested. As Vibrio spp. cannot
be eliminated from the environment, their increasing presence in coastal waters
worldwide poses a serious public health concern for consumers and for the shellfish
harvesting industry. There has therefore been substantial interest in understanding the
biotic and abiotic determinants of V. parahaemolyticus, as such information would
prove useful in forecasting its abundance in shellfish harvesting waters.

Many ecological studies of V. parahaemolyticus have reported associations with a
number of environmental factors (7, 8). Water temperature has consistently been found
to be an influential predictor, with greater environmental abundance and reported
illnesses occurring during warmer months. Additional studies have proposed an asso-
ciation with chitin-producing phyto- and zooplankton (9, 10). Narrow ranges of salinity
have been frequently observed in the literature, resulting in both negative and positive
correlations with salinity (8). When measured across a sufficient observable range,
studies have instead observed an “optimal” salinity (10 to 23‰) for the bacterium, such
that abundance decreases as waters become too fresh or saline (11–14). However, these
findings are incongruent with experimental studies that describe V. parahaemolyticus
persisting at salinities even higher than those observed in marine waters (15, 16). Low
dissolved oxygen (DO) and high turbidity have been sporadically identified as potential
determinants, and a few studies have explored associations with nutrients, specifically,
forms of nitrogen, phosphorus, and carbon (8).

While the established literature has provided a rich background for understanding
many of the potential environmental determinants for V. parahaemolyticus, it is often
difficult to identify consistent associations across studies, although the association
between warmer waters and a greater presence and abundance is a notable exception.
Previous environmental undertakings vary significantly in their spatial-temporal extent
and resolution, as do the number of environmental parameters measured and their
respective observable ranges (8). Furthermore, many studies only consider a small
number of environmental measures or lack the sample size to test multiple associations
in a parametric statistical model, making an identification of redundant environmental
associations difficult.

A large data set of water samples in the Chesapeake Bay collected across multiple
seasons and monitoring stations between 2007 and 2010 (17) provides a unique
opportunity to further harmonize the ecological paradigm of V. parahaemolyticus in the
water column. These samples were analyzed using a quantitative PCR (qPCR) method
to detect the genetic markers thermolabile hemolysin (tlh), thermostable direct hemo-
lysin (tdh), and tdh-related hemolysin (trh). As this method was not paired with a culture
technique, abundance is reported as the genomic equivalents of CFU per milliliter
(GE/ml). Samples were supplemented with a host of in situ water quality measurements,
providing the opportunity to test the redundancy and robustness of many potential
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environmental determinants. The current analysis also introduced a sophisticated form
of parametric regression modeling that can simultaneously account for the limits of
detection and quantitation from qPCR results. Linear B-splines were included in models
to identify nonlinear associations while preserving easy interpretation of associations.
This work also explored previously uninvestigated spatial and temporal interactions
and the residual variation of environmental determinants on the abundance of V.
parahaemolyticus. The analyses presented in this paper therefore offer a robust and
original effort to evaluate a wide array of environmental determinants across a signif-
icant spatial and temporal range and to extend the literature on the ecology of V.
parahaemolyticus.

RESULTS

The numbers of water samples taken across years were relatively similar, with 335
samples taken in 2007, 419 in 2008, 375 in 2009, and 394 in 2010. Similar variations in
sample numbers were seen across seasons, with 479 samples taken in the spring (April),
551 in summer (July), and 493 in autumn (October). The numbers of samples across
different regions of the Chesapeake Bay were more variable, with fewer samples taken
in the narrow tributaries and more samples taken in the main stem of the bay (e.g., 75
samples taken in the York River versus 302 samples taken in the mesohaline region of
the main stem) (Fig. 1). The numbers of samples collected at individual sampling
stations ranged from 2 to 12, with an average of 10.3 samples per station.

For the extraction protocol, recovery estimates averaged (with standard deviation
[SD]) 46.17% � 7.55% (n � 40) of starting DNA over a 6-log range. High repeatability
was found in both replicate water samples from the same station (R2 � 0.92, n � 32)
and replicate samples from the same source (R2 � 0.94, n � 34). Freezing did not
significantly affect the measured V. parahaemolyticus concentrations, with split samples
demonstrating a 1:1 relationship (� � 1.10, R2 � 0.84, n � 20). Standard curves of cycle
threshold (CT) values versus concentrations yielded an assay efficiency (with SD) of
88.60% � 5.90% (n � 4), with a sensitivity of �1 GE/ml in a 200-ml water sample. No

FIG 1 (A) NOAA water sampling sites with V. parahaemolyticus detection rates (Vp % Detects), weather stations, and watershed land use. (B) Ten regional
categories used for spatial analysis. Overall salinity levels distinguished three main stem regions. Five regions on the western shore each encapsulated a major
tributary, and two remaining regions aggregated smaller tributaries on the eastern shore.
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inhibitors were observed in any environmental samples, based on the amplification of
the internal control.

Rates of V. parahaemolyticus were relatively low in the water samples, with only
19.6% of samples containing any detectable concentration of tlh genetic material
(Table 1). Among samples with detectable concentrations, the average was 2.6 GE/ml.
Presence and abundance were both higher in summer and autumn, but with little
variation between the two. The presence of genetic material was notably higher in 2007
and 2010 and low in 2008. The abundance was only substantially higher in 2010.
Detection rates also varied significantly by area, with some of the highest rates of detection
occurring in the mesohaline sections of the James and Rappahannock Rivers, as well as in
many of the Tangier/Nanticoke/Pocomoke region’s smaller tributaries (Fig. 1).

As expected, water temperature was the highest during the summer and lowest
during the spring (Table 1). In contrast, salinity was lowest in the spring, likely due to
annual freshwater inflow from snowmelt, and highest during the autumn. All nitrogen
ion levels were much higher in the spring months, as were ratios of dissolved inorganic
nitrogen and phosphorus (DINP). Chlorophyll a was highest in the summer, when algal

TABLE 1 Descriptive characteristics of V. parahaemolyticus and environmental determinants, as well as their variation across sampling
months

Characteristic
No. of
samples Overalla

Seasonb

Spring (April) Summer (July) Autumn (October)

V. parahaemolyticus (% [n] detected) 1,523 19.6 (298) 2.7 (13) 28.3 (156) 26.2 (129)
V. parahaemolyticus (GE/ml for detected samples only) 298 2.6 (1.1–143.6) 0.8 (0.2–1.6) 3.0 (1.2–6.2) 2.6 (1.1–5.8)

Land/water
Water temperature (°C) 1,523 19.1 (7.1–32.1) 13.8 (11.3–15.6) 27.3 (26.4–28.1) 17.9 (15.6–20.7)
Salinity (‰) 1,522 10.2 (0–27.1) 7.1 (0.1–12.7) 10.6 (1.4–14.9) 14.3 (4.1–18.3)
pH 1,523 7.9 (6.2–9.5) 7.9 (7.5–8.1) 7.8 (7.5–8.1) 7.9 (7.6–8.0)
Bathymetry (m)c 1,523 7.5 (1.5–35) —d — —
%Waterc 1,523 39.0 (1.5–100.0) — — —

Abiotic water quality
Total suspended solids (mg/liter) 1,517 9.0 (2.2–198.0) 9.0 (5.4–20.0) 9.4 (6.5–18.0) 8.4 (5.4–15.0)
Secchi depth (m) 1,497 0.8 (0.1–4.4) 0.8 (0.4–1.4) 0.8 (0.5–1.1) 1.0 (0.6–1.5)
Dissolved oxygen (mg/liter) 1,510 8.1 (3.1–17.7) 9.5 (8.6–10.6) 6.9 (6.0–7.6) 8.3 (7.3–9.0)
Dissolved organic nitrogen (mg/liter) 1,508 0.3 (0.1–1.6) 0.3 (0.2–0.4) 0.3 (0.2–0.4) 0.3 (0.2–0.4)
Dissolved organic phosphorus (�g/liter) 1,508 9.0 (0.0–87.5) 6.8 (4.3–10.0) 9.9 (7.0–14.0) 10.7 (7.0–15.1)
Ammonium (�g/liter) 1,513 19.8 (1.3–401.0) 28.0 (12.0–64.2) 14.0 (6.0–29.5) 17.7 (7.0–35.0)
Nitrate (�g/liter) 1,487 32.6 (0.0–3,143.0) 330.8 (66.8–700.2) 4.0 (1.6–31.5) 28.0 (4.23–167.6)
Nitrite (�g/liter) 1,486 4.0 (0.1–165.0) 6.7 (2.63–10.18) 2.0 (0.6–3.7) 7.85 (2.0–18.0)
Phosphate (�g/liter) 1,513 6.0 (0.4–204.0) 3.2 (2.2–11.3) 7 (3.7–19.0) 7.6 (3.1–22.1)
Dissolved inorganic N:Pe 1,513 10.1 (0.2–1,610.0) 65.3 (20.9–170.0) 3.9 (1.7–9.8) 8.2 (4.2–17.5)
Particulate nitrogen (mg/liter) 1,522 0.2 (0.0–2.1) 0.2 (0.1–0.3) 0.3 (0.2–0.4) 0.2 (0.1–0.3)
Particulate phosphorus (�g/liter) 1,522 24.2 (4.2–494.6) 21.5 (12.5–41.8) 31.0 (22.0–50.8) 16.9 (12.1–32.3)

Biotic water quality
Chlorophyll a (mg/liter) 1,471 10.0 (0.3–124.4) 8.9 (4.8–16.3) 12.0 (8.7–19.7) 7.9 (5.0–13.8)
Pheophytin (mg/liter) 1,498 1.6 (0–44.5) 1.4 (0.6–3.4) 2.1 (0.6–4.6) 1.3 (0.6–3.5)

Moderate-to-heavy rainfall (% [n])f

Lag 0 1,520 2.9 (44) 3.1 (15) 3.5 (19) 2.0 (10)
Lag 1 1,519 3.4 (52) 1.9 (9) 6.6 (36) 1.4 (7)
Lag 3 1,518 3.5 (53) 2.1 (10) 4.4 (24) 3.9 (19)
Lag 7 1,521 1.8 (28) 1.3 (6) 0.5 (3) 3.9 (19)
Cum. 3 1,523 16.4 (250) 16.5 (79) 19.4 (107) 13.0 (64)
Cum. 7 1,523 3.5 (53) 1.9 (9) 3.1 (17) 5.5 (27)

aValues are medians and ranges, unless otherwise indicated.
bValues are medians and interquartile ranges, unless otherwise indicated.
cDoes not vary seasonally.
d—, not applicable.
eRatio of nitrogen to phosphorus.
f“Lag” indicates the exact number of days rainfall was measured before water samples were taken (e.g., “Lag 3” indicates rainfall was measured 3 days before a water
sample was taken). “Cum.” indicates the cumulative amount of lagged rainfall measurements (e.g., “Cum. 3” indicates that rainfall measurements were summed from
3 days prior up until and including the day of sampling).
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blooms are likely to occur, and so it is not surprising to find that dissolved oxygen (DO)
was lower during this season (Table 1). Many of the sampling stations were surrounded
mostly by forest (46.8%) and by wetlands (25%). Daily wind speed averages were found
to be positively associated with turbidity (as measured by Secchi disk depth; P �

0.0001).
After removing the samples with missing environmental data, 1,385 complete case

samples were used for regression modeling. Almost all environmental determinants
appeared to be significantly related to V. parahaemolyticus in the univariate models
(Table 2). A clear positive association was maintained for water temperature across its
observable range, with few detectable values observed under 15°C. Salinity displayed
a nonlinear relationship, showing a strong positive association as it rose from fresh-

TABLE 2 Comparison of univariate (unadjusted) and multivariate (adjusted) analyses for
the main effects of abundance of V. parahaemolyticus (interval-censored regression)a

Environmental determinant

RCGM

Univariate Multivariate (95% CI)

Water characteristics
Temperature (°C)b 1.30 1.17 (1.09–1.27)
Salinity (‰)

0–10.2 1.05 1.09 (1.07–1.1)
10.2–27.1 0.98 1.01 (1.00–1.03)

pH 0.82 —c

%Waterb 0.97 0.95 (0.93–0.96)

Abiotic water quality
Secchi depth (m) 0.82 0.8 (0.74–0.87)
Dissolved oxygen (mg/liter)

3–6 0.49 0.63 (0.56–0.7)
6–18 0.93 1.04 (0.99–1.08)

Dissolved organic nitrogen (mg/liter) 1.79 1.29 (1.01–1.66)
Dissolved organic phosphorus (�g/liter)b

0–20 1.22 1.07 (1–1.14)
20–90 0.92 0.89 (0.81–0.98)

Ammonium (�g/liter) 1.00 —
Nitrate (�g/liter) 0.99 —
Nitrite (�g/liter)b

0.0–0.91 1.26 1.74 (0.42–7.26)
0.91–170 1.06 1.04 (1.01–1.06)

Phosphate (�g/liter)b 1.10 1.04 (1.02–1.07)
Dissolved inorganic N:P 0.99 —

Biotic water quality
Chlorophyll a (mg/liter)b 1.00 0.96 (0.94–0.99)
Pheophytin (mg/liter)

0–5 1.07 1.03 (1.01–1.06)
5–45 0.98 1 (0.98–1.01)

Land use
Forest (REF)d

Developed 1.26 —
Agriculture 0.87 —
Wetlands 1.12 —

Moderate-to-heavy rainfalle

Lag 0 1.17 —
Lag 1 1.54 1.31 (1.11–1.55)
Lag 7 1.36 1.43 (1.15–1.78)

aRCGM, relative change in geometric mean; N:P, ratio of nitrogen to phosphorus. Boldface font indicates P �
0.10 in univariate analysis and P � 0.05 in multivariate analysis. Linear combination tests were calculated
for B-spline associations.

bChanges in units are expressed in increments of 10.
c—, not applicable.
dForest was the reference level for the categorical variable of land use.
eLag indicates the exact number of days rainfall was measured before water samples were taken (e.g., “Lag
3” indicates rainfall was measured 3 days before a water sample was taken).
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water to 10.2‰ (relative change in geometric mean [RCGM] � 1.05), after which the
abundance appeared to decrease (e.g., RCGM � 0.98). Dissolved organic nitrogen
(DON), phosphate, and turbidity each had positive relationships with V. parahaemolyti-
cus abundance, while nitrate, DINP, pH, and the percentage of pixels classified as water
(%Water) had negative relationships. Land use had significant associations, with the
proximity to developed lands indicating the greatest abundance rates and the prox-
imity to agriculture being associated with the lowest concentrations overall. DO
displayed a strong negative relationship with abundance up to 6 mg/liter, after which,
a more gradual slope was observed. Additional nonlinear associations were observed
for dissolved organic phosphorus, nitrite, and pheophytin. Moderate-to-heavy rainfalls
1 and 7 days prior were also significantly positively associated with the abundance of
genetic material (Table 2).

Water temperature, %Water, DON, nitrite, and phosphate were not substantially
affected by adjustments in the multivariate models (Table 2). Many environmental
determinants, including pH, nitrate, DINP, and surrounding land use, were no longer
statistically significant in multivariate models. In an effort to improve upon model
simplicity, these variables were excluded from later multivariate models (Table 2).

The positive association across low levels of salinity was strengthened in the
multivariate model (RCGM � 1.09; 95% confidence interval [CI], 1.07 to 1.10) (Table 2).
However, there was no longer a statistically significant association with V. parahaemo-
lyticus abundance at salinity concentrations above 10.2‰ (RCGM � 1.01; 95% CI, 0.99
to 1.03). Upon further investigation, the adjusted slopes were mostly influenced by the
inclusion of the Secchi disk depth variable, which became even more negatively
associated in the multivariate model (RCGM � 0.80; 95% CI, 0.74 to 0.87). For DO, the
negative association with values less than 6 mg/liter was attenuated but still statistically
significant; there was no longer a significant association above this threshold. Chloro-
phyll, despite having no association with abundance in the univariate analysis, was
found to have a statistically significant negative association in the multivariate model
(Table 2).

The inclusion of variables for season and year, but not region, substantially im-
proved the model fit (Table 3, models 3 to 6). The inclusion of year also resulted in the
DON association becoming nonsignificant (P � 0.70). Some spatial and temporal
interactions were also observed in sensitivity analyses (Table 3, models 9 and 10). The
most noteworthy interaction occurred between season and salinity (Fig. 2; Table 3,
model 7). During the summer and above 10.2‰, the abundance of V. parahaemo-
lyticus leveled off as was seen in the multivariate model. However, during autumn,
the association with salinity displayed a more symmetric association, with the
largest abundance of genetic material co-occurring at the 10.2‰ threshold. Further
investigation revealed that this effect modification was highly dependent upon water
temperature and turbidity. In warmer (�27°C) and in more turbid waters, there was no
drop in abundance even at the highest salinities (Fig. 2; Table 3, model 8). Additional

TABLE 3 Comparison of AIC across different interval-censored regression models for the
abundance of V. parahaemolyticusa

Model No. Model name AIC

1 Null model (intercept only) 4,056
2 Main effects model (Table 2) 3,036
3 Model 2 � region 3,032
4 Model 2 � season 3,029
5 Model 2 � year 2,956
6 Model 2 � “year * season” 2,926
7 Model 6 � “season * salinity” 2,896
8 Model 6 � “WtempQ * season * salinity” � “TurbQ * salinity” 2,842
9 Model 8 � “year*DO” � “year*PO4” 2,786
10 Model 9 � “LU*DO” � “LU*PO4” 2,777
aAIC, Akaike information criterion; WtempQ, quartiles of water temperature; TurbQ, quartiles of turbidity
(Secchi disk depth); LU, land use; DO, dissolved oxygen; PO4, phosphate.
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interactions revealed that the associations of DO and phosphate were modified sub-
stantially by the year of sampling and by land use (P � 0.05 for all interaction terms)
(Table 3, model 10). Specifically, both associations were most pronounced when
monitoring stations were largely near human developments.

Prior to modeling, a multicollinearity analysis revealed many strong similarities
across environmental determinants, notably for forms of nitrogen and phosphorus, for
multiple rainfall measurements, and for air and water temperature (see Table S1 in the
supplemental material). Representative variables were selected a priori for a regression
analysis. An exploratory analysis revealed further redundancies between bathymetry
and %Water (see Fig. S1). Given that the bathymetry variable was pseudocontinuous,
%Water was used for model fitting. Similar redundancies were found for the Secchi
depth and total suspended solids; the Secchi depth was used as it had fewer missing
observations. Many rainfall measurements were also redundant, and so only variables
for the day of sampling and 1 and 7 days prior were retained. Particulate nitrogen and
phosphorus were excluded, as both were redundant given the variability of chlorophyll
and pheophytin. No multicollinearity was identified in the final model.

Residuals showed a greater lack of fit (LOF) for summer and autumn. In addition to
greater LOF in 2007 and 2010, it appears that V. parahaemolyticus abundance in 2010
may have been underestimated (X� � 0.17, standard error [SE] � 0.04). Model residuals
also indicated there was an underestimation in the main stem of the Chesapeake Bay
and overestimations in the Patuxent and Rappahannock regions (see Table S2). Finally,
while spatial dependence was observed for abundance, semivariogram plots revealed
no residual spatial variation in the multivariate models.

DISCUSSION

This V. parahaemolyticus ecological study examines a wide array of environmental
determinants in a sizable data set with significant spatial and temporal extent. The
findings have helped unify the ecological paradigm of V. parahaemolyticus in the water
column by confirming many previously reported associations with environmental
determinants while also identifying redundancies across such measures. The results
from these analyses also revealed more complex associations that had not been

FIG 2 Association between V. parahaemolyticus abundance (log-transformed GE/ml) and salinity (‰) stratified by sampling season (A), Secchi disk quartiles (B),
temperature quartiles in summer (C), and temperature quartiles in autumn (D). Note that panel C includes only the 3rd and 4th quartiles of temperature, while
panel D includes the 1st through 3rd quartiles. Lines and 95% confidence bands were created using the local smoothing regression “LOESS.”
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identified before. Given the Chesapeake Bay’s unique hydrography, future work will be
needed to further elucidate these findings.

The strong positive associations with water temperature and with turbidity are
consistent across many previous studies (7, 8, 13). V. parahaemolyticus has been
proposed to attach to chitin-producing biota such as zooplankton (9, 10). However, V.
parahaemolyticus has also been found to attach to sediment and so may also be
attached to particles suspended in the water column (13, 18). It seems likely that the
higher turbidity observed in this analysis is from resuspended sediments where V.
parahaemolyticus was already residing, given the measure’s strong correlation with
wind speed and a lack thereof with the seasonal variation of nutrients. The consistency
of these results and the strength of the association with turbidity are of great interest
and improve the overall understanding of V. parahaemolyticus abundance in the water
column.

While the parabolic trend for salinity observed in the univariate analysis was
expected, the impact of adjusting for turbidity at higher levels of salinity reveals a
relationship that has not been identified before. Previous studies that have reported a
nonlinear relationship between salinity and V. parahaemolyticus frequently used qua-
dratic terms in their models, which force a parabolic relationship (11, 19, 20). The use
of linear B-splines in the present analyses provided the flexibility to observe unre-
stricted nonlinear associations. Salts can cause a reduction in turbidity by aggregating
suspended solids, which then deposit out of the water column (21). In addition, the
more saline waters of the Chesapeake Bay are found closer to the mouth of the bay and
so are often farther away from watershed inputs that can increase turbidity. The low
densities in the main stem associated with higher salinities are also likely influenced
by the proximity to shorelines, which was observed in the current analysis using the
%Water variable. These areas may be preferred for relaying oysters to reduce V.
parahaemolyticus densities relative to the more protected areas where oysters are
normally cultured.

The interaction between water temperature and salinity, in addition to turbidity and
salinity, provides great insight into the bacterium’s persistence in the environment (Fig.
2). V. parahaemolyticus has been observed to be excellent at resisting osmotic stress
in lab-based experimental settings and can persist at salinities up to 90‰ (15, 16).
However, ecological studies often describe V. parahaemolyticus abundance as decreas-
ing at higher levels of salinity (i.e., �10 to 23‰ [11–14]). Experimental settings often
grow V. parahaemolyticus in medium that is nutrient rich and at temperatures much
warmer than what is observed in estuarine waters (�37°C). Current results suggest that
when water temperatures are generally cooler (�26°C) or less nutrient rich, V. parah-
aemolyticus may be less resistant to osmotic stress, and subsequently, high salinity can
be a limiting factor for initial growth. Alternatively, fewer nutrients may simply not
support higher densities. Regardless, the current findings clarify the incongruence of
these two research settings. Future experimental studies can confirm these findings by
subjecting V. parahaemolyticus to lower temperatures, and mesocosm studies could be
used to confirm the salinity interaction with turbidity. It is difficult to fully separate out
the effect modification of season and water temperature on salinity in the present
results. Future environmental studies with greater temporal resolution are therefore
also needed to better understand this interaction. Such studies can capture different
ranges of water temperature across and between seasons.

The strong negative association observed for V. parahaemolyticus and dissolved
oxygen runs counter to another study in the Chesapeake Bay that reported a positive
association (22). However, the negative association in the present analyses was primar-
ily observed at the lowest levels of DO (3 to 6 mg/liter), while the previous study only
recorded a minimum DO of 5.3 mg/liter. Low DO in a water column implies deoxy-
genation, likely from rapid phytoplankton growth such as algal blooms, and so the
observed negative relationship fits within the existing paradigm for V. parahaemolyticus
ecology. However, this same paradigm runs contrary to the limited associations ob-
served for both chlorophyll and pheophytin. It may be that these pigments have a
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lagged association, such that the abundance only increases after an algal bloom has
already subsided. Further analyses considering lagged measures of chlorophyll, pheo-
phytin, and dissolved oxygen may further explain the underlying environmental rela-
tionships. The Chesapeake Bay is infamous for its widespread and intense algal blooms,
especially during warmer months (23). Efforts are currently under way to limit nutrient
runoff into the bay (24). Improving water clarity and preventing algal blooms in the bay
may therefore also reduce the abundance of V. parahaemolyticus in its tidal waters.
Further research is needed to investigate this hypothesis.

Many interesting and more complex relationships with tidal water nutrients, spe-
cifically, forms of nitrogen and phosphorus, were indicated in this study, several of
which are congruous with previous findings (25–27). Most noteworthy is that in the
present analysis, many of these potentially colinear measures could be adjusted for
simultaneously along with other well-established V. parahaemolyticus environmental
determinants. While nitrate has been found to have a negative association in at least
one other study (26), the inclusion of additional environmental determinants in the
present analysis may explain the lack of association in this analysis. The dynamics of
ammonium, nitrate, and nitrite concentrations are complex, and so it can be difficult to
interpret the multivariate associations of these spatially and temporally indexed vari-
ables. Overall, though, positive associations with nutrients indicate that the availability
of nitrogen and phosphorus provides a hospitable environment for the bacterium.

The interactions observed for land use and both DO and phosphate indicate that
runoff from nearby human development drives the association of V. parahaemolyticus
with these environmental indicators. Impervious surfaces increase the rate of sediment
runoff and can introduce untreated sanitary waste (28). The rapid introduction of
inorganic material and microorganisms to the Chesapeake Bay may influence abun-
dance in unique ways. Further research investigating the impact of human develop-
ment on V. parahaemolyticus abundance is recommended.

The variation of V. parahaemolyticus that was explained by adding year and season
to the model likely indicates that there are additional environmental determinants that
were not accounted for in the present analysis. The summer and autumn of 2007 and
2010 were unexpectedly warm relative to long-term temperature averages. This likely
contributed to the high abundance of the bacterium observed in these years. Incor-
porating such climatic anomalies as a covariate could reduce the model’s residual
temporal variation. The inclusion of phyto- and zooplankton counts, as well as mea-
sures of dissolved carbon in water, may further improve the model fit and reduce
residual temporal variation. A previous study found that a complex, nonlinear temporal
variable essentially explained all variability of the environmental determinants in their
model (29). However, this term was likely representative of the natural temporal
variation of the variables that became nonsignificant when the temporal regression
terms were added. Unless such temporal terms can be shown to have systematic and
predictable cycles, they may prove ineffective for the inference of V. parahaemolyticus
ecology and for forecasting abundance in shellfish harvesting waters. A focus on easily
measured environmental determinants may provide more flexibility when developing
such models.

The extensive array of water quality measurements and wide observable ranges
allowed the present analyses to identify redundancies in associations and to quantify
each environmental determinant’s relationship to V. parahaemolyticus independent of
other parameters. The large sample size also provided the statistical power necessary
to observe nonlinear relationships of many water quality variables simultaneously, as
well as potential interactions across space and time. Other studies have often been
unable to evaluate environmental associations with V. parahaemolyticus using para-
metric statistical relationships, due either to a limited number of water quality mea-
surements or to too few samples collected to maintain statistical power.

This V. parahaemolyticus study uses interval-censored regression to incorporate all
microbial outcome measures within a single model. This model structure will undoubt-
edly prove useful for modeling V. parahaemolyticus and other microbial species when
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the detection rates are low but when there is still substantial variation in microbial
abundance among the detected samples. This model structure is superior to simple
imputation methods, which can substantially bias analytical results (30). The use of
linear B-splines in the present analyses also provided flexibility to observe unrestricted
nonlinear relationships without sacrificing the clear interpretation of associations that
is provided by a generalized linear regression model.

It is important to note that the current microbial analyses were limited to qPCR
analysis and were not paired with most probable number (MPN) culturing techniques.
It is therefore unknown if the genetic material detected by the analysis was from living
V. parahaemolyticus. As a result, genomic equivalents for the level of nucleic acid
present in the examples were used to determine abundance. The overall similarities
between the environmental determinant associations in the present analysis and those
from studies that included a culture method suggest that water samples in this study
likely included living V. parahaemolyticus bacteria.

Although tdh and trh genetic markers, which have been described as indicating
virulence for V. parahaemolyticus, were measured for this study, neither was detected.
However, this finding is similar to previous work that also identified low detection rates
of these markers in Chesapeake Bay water samples (22). Previous studies have shown
that the environmental relationships with V. parahaemolyticus strains containing these
markers may be distinct from those that have only the tlh marker (13). An improved
understanding of V. parahaemolyticus genetic markers is an area of active investigation,
as many strains with tdh-trh have not been found to be pathogenic, while still other
strains lacking these markers can be infectious (31). Regardless, the environmental
associations described in this analysis should not necessarily be interpreted as repre-
sentative of an abundance of pathogenic V. parahaemolyticus in the water column. The
small detectable sample in the current study may also be contributing to a lack of
detection of tdh-trh. Shellfish are known to contain relatively high levels of V. parah-
aemolyticus, and previous studies have detected tdh-trh markers in shellfish in the
Chesapeake Bay (22). Therefore, future shellfish sampling in the Chesapeake Bay could
yield higher detection rates of these pathogenic markers.

Bacterium abundance in oysters may be considered a more relevant measure for the
public health concerns surrounding V. parahaemolyticus in the Chesapeake Bay given
that shellfish consumption is the primary exposure route for infection. Unfortunately, a
standard conversion between V. parahaemolyticus in the water column and in shellfish
tissue has not been identified. However, V. parahaemolyticus variability across oysters
can be high given the idiosyncrasies of shellfish physiology (e.g., age, sex, immune
status, filter rate, etc.). In contrast, the variability across water samples is likely to be
relatively more stable, potentially making the present analyses the preferred approach
for understanding the relative differences in bacterium abundance across space and
time and as a function of environmental measures in the bay. Therefore, an improved
ecological understanding of V. parahaemolyticus in the water column, and future
prediction models for shellfish harvesting waters, may provide a more suitable route for
mitigating the public health burden of the bacterium compared to analogous efforts in
shellfish. Predictions in the water column could also be directly beneficial in reducing
direct exposure to V. parahaemolyticus in recreational waters. Regardless, future work in
the Chesapeake Bay should additionally sample for V. parahaemolyticus abundance in
shellfish to compare the prediction performance as well as to investigate abundance
conversion models between sample types.

The inclusion of lagged variables in the current analysis is supported by significant
associations of rainfall at 1- and 7-day lags and the nonsignificant association for
same-day rainfall in the multivariate model. A full time-series analysis of precipitation
could further improve the understanding of the impacts of rainfall on V. parahaemo-
lyticus. Such work should also consider watershed river discharge following an array of
weather events, including thunderstorms and droughts. Additional investigations could
further address nuances of land use and the spatial-temporal impact of runoff by
coupling unique weather events with a digital elevation model.
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Lagged associations may also exist for other environmental determinants. The
Chesapeake Bay is one of the most researched bodies of water in the world, with many
of the water quality measurements used in this analysis being consistently sampled
over space and time. The availability of this larger sampling scheme is well suited for
more complex spatial-temporal analyses that incorporate lags of the environmental
measures used in this study. A better model fit through inclusion of environmental lags
would be of great interest for predicting or forecasting V. parahaemolyticus abundance
in water and shellfish.

MATERIALS AND METHODS
Study area. The Chesapeake Bay is the largest estuary in the United States, with a surface area of

11,601 km2 and a volume of over 68 trillion liters (32). Seawater from the Atlantic Ocean enters through
the mouth of the bay in the south, while freshwater enters from six major rivers and over 100 other
smaller rivers and streams. The temperatures of the Chesapeake Bay range widely over space and time,
dipping below 4°C in the winter and reaching higher than 28°C in the summer. Salinity in the bay also
varies substantially; fresh tidal waters can be found at the heads of rivers, while salinity concentrations
of up to 30‰ are common near the mouth of the bay (33). The Chesapeake Watershed extends into six
states and has an area of approximately 166,000 square kilometers. This watershed is home to approx-
imately 18 million people, contains multiple metropolitan areas, and is known for its agricultural
activities. Approximately 500 million pounds of seafood are harvested from the bay each year (32).

Data collection. Water sampling methods were described previously in reference 17. Briefly, surface
water samples (0.5-m depth) were collected at 148 sampling stations across the Chesapeake Bay by the
Maryland Department of Natural Resources and the Virginia Department of Environmental Quality’s
respective water quality monitoring programs according to standard Chesapeake Bay Program protocols
(34) (Fig. 1). Samples were taken during the months of April (spring), July (summer), and October
(autumn) from 2007 to 2010, as well as in January (winter) of 2007 (n � 1,592). Winter data were removed
from the present analysis due to the lack of comparisons across years. Therefore, only 1,523 surface
samples were considered for this analysis.

Water quality was measured in situ with a YSI datasonde (YSI Incorporated, Yellow Springs, OH) and
with a Secchi disk at the same time and location at which water samples were collected. Measurements
were analyzed according to the Chesapeake Bay Program’s guidelines (35). Measurements included
water temperature, salinity, forms of nitrogen and phosphorus, turbidity, and dissolved and suspended
solids, as well as pigments of phytoplankton (i.e., chlorophyll a and pheophytin). The ratios of nitrogen
and phosphorus were also calculated.

A bathymetric digital elevation model, created by the National Oceanic and Atmospheric Association
(NOAA) Chesapeake Bay Office using hydrographic survey soundings (36), was accessed to determine the
total depth of each monitoring station. Each station was categorized into seven bathymetry bins, and the
midpoints of each bin were used as pseudocontinuous variables (37).

Daily weather data for 2007 to 2010 from 23 surrounding monitors were retrieved from NOAA’s
National Centers for Environmental Information Global Historical Climatology Network database (Fig. 1)
(38). Water samples were assigned to the closest weather monitor and temporally matched with each
water sampling date. Precipitation and air temperature variables were lagged up to 7 days before each
sampling date. Precipitation variables were converted into binary variables based on whether rainfall was
moderate to heavy (�1 mm/h). Daily summaries of wind speed were also retrieved from the weather
monitor at the U.S. Naval Academy in Annapolis, Maryland, and were temporally matched with each
water sample.

Land use classification for the Chesapeake Bay Watershed was extracted from the Multi-Resolution
Land Characteristics Consortium’s 2006 national land cover database, which is based on Landsat satellite
data (39). To simplify the analysis, only five classifications (water, developed lands, plant and animal
agriculture, wetlands, and forest) from this database were considered (Fig. 1). Five-, ten-, and fifteen-mile
circular buffers were drawn around each water sample monitoring station (40). For each buffer, the
percentage of pixels classified as water was calculated (%Water), and the most prominent land use was
identified. Only the 5-mile buffer was considered for the %Water variable, given that larger buffers
extended significantly outside the watershed. A sensitivity analysis revealed minimal variation in the
classification of surrounding land use by buffer size, and so the 10-mile buffer was chosen for all
subsequent analyses.

qPCR for total V. parahaemolyticus. The purification methods were in accordance with a modified
MoBio power soil protocol as described in reference 41. A species-specific primer/probe combination was
employed for the detection of total V. parahaemolyticus (42). The assay incorporated a unique internal
control for the detection of any inhibitors within each sample (42) (Table 4). Primers and probes for this
assay were obtained from Integrated DNA Technologies (IDT, Coralville, IA). The qPCR for V. parahae-
molyticus was performed by adding 0.50 �l of deoxynucleoside triphosphate (dNTP) solution, 0.500 �l of
each primer, 0.45 �l of 5-U/�l Platinum hot start Taq (Invitrogen), and a quantity of PCR-grade water
sufficient for 25-�l reaction mixtures. Two-stage qPCR cycling parameters were optimized to an initial
denaturation of template at 95°C for 60 s, followed by 45 cycles of denaturation at 95°C for 5 s and
combined annealing and extension at 66°C for 45 s. On occasion, amplification products were run on a
1.5% agarose gel at 84 V for 1 h 45 min as a quality control measure to ensure proper products were
being amplified by comparison to a known molecular weight marker.
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qPCR for trh-tdh from V. parahaemolyticus. A combination of two sets of primers and probes was
used for the detection of the genes tdh and trh in V. parahaemolyticus (42) (Table 4). All primers and
probes were obtained from IDT. As with the total V. parahaemolyticus assay, a unique internal control was
incorporated simultaneously to test for the presence and influence of inhibition. The qPCRs was
performed by using 1.00 �l of dNTP, 0.50 �l of tdh and trh primers, 0.19 �l of 10.00 �M tdh_269-20 and
trh_133-23 probes, and 0.45 �l of 5-U/�l Platinum hot start Taq (Invitrogen) per reaction. Two-stage qPCR
cycling parameters were an initial denaturation of template at 95°C for 60 s, followed by 50 cycles of
denaturation at 95°C for 5 s and combined annealing and extension at 59°C for 45 s. Quality control
procedures were performed as described above.

Assay performance/standard curve. Assay performance testing was carried out as described
previously (41). Aspects of the assay that were evaluated included extraction recovery estimates,
bottle-to-bottle replication, within-sample repeatability, and assay efficiency calculated from multiple
standard curves using the formula E � �1 � 10(�1/slope) (43). In addition, the effects of freezing water
samples for transportation were evaluated. Seawater was collected and screened prior to use to ensure
no background contamination. In replicate 500-ml sterile Nalgene bottles, V. parahaemolyticus cells were
added over a 6-log scale. One bottle of each replicate log was immediately extracted as described above,
while the second replicate was frozen at �20°C for 1 week. Bottles were subsequently pulled from the
freezer, thawed, and extracted in the same manner as for all other samples. The recovery of DNA was
estimated by first running a boiled cell suspension through the PCR assay and gel purification. The DNA
content was measured using a NanoDrop 1000 instrument (Thermo Scientific, Waltham, MA).

Standard curves were generated for total V. parahaemolyticus, whereas virulence was assessed as
present or absent. To generate standard curves, cell suspensions were made from pure cultures taken in
the exponential growth phase in alkaline phosphate water, and 200 �l from each suspension was plated
on tryptone salt agar plates with 3% NaCl to determine the cell count. Starting with 4.8 	 107 cells/ml,
1:10 dilutions were made down to 4.8 cells/ml. Two filters were processed for each dilution by spiking
200 ml of water with 1 ml of the Vibrio dilution, and all filters were processed as described above. The
water used for the standard curve was tested for the presence of V. parahaemolyticus prior to being used
to ensure no target bacteria were present. The extracted DNA from all dilutions was then run according
to the above qPCR parameters, and the CT values were plotted against the numbers of total cells in the
extraction to determine the standard curve. The limit of detection based on the standard curves was 0.14
CFU/ml, and the limit of quantitation was 1.00 CFU/ml. These standard curves were then applied to the
water samples to transform CT values into CFU/ml. Once complete, the units of V. parahaemolyticus
abundance were transformed into genomic equivalents of CFU per milliliter (GE/ml) and were used as the
primary data outcome for statistical analysis.

Statistical analysis. V. parahaemolyticus outcome data, along with environmental determinants,
were summarized using quartiles and proportions and were tabulated by sampling season. The propor-
tion of missing data for each determinant was calculated. The distribution of outcome data was also
evaluated for normality.

Given the large number of water samples analyzed below the limit of detection (sparse data) and for
quantitation, along with samples reaching values of 143.6 GE/ml, an interval-censored regression was
used to model V. parahaemolyticus abundance. The statistical methods developed for survival analysis
(44) are easily transferable to this environmental setting by replacing time-to-event censoring with limits
of detection and quantitation from the qPCR analysis. Abundance was therefore reclassified into
intervals: 0.00 to 0.14 for measures below the limit of detection and 0.14 to 1.00 for measures between
the limit of detection and the limit of quantitation. All other V. parahaemolyticus measurements were
given an interval whose range was the value of the observed concentration (e.g., 34.50 to 34.50).
Analyses were conducted assuming a lognormal distribution for quantified measures.

Univariate regression models were created for the abundance of V. parahaemolyticus. Nonparametric
local regressions (LOESSs) were plotted to determine if the assumption of linearity for the included
effects was appropriate. If trends appeared to be clearly nonlinear, linear B-splines were calculated with
knots that were identified by visual inspection of the trends. The variance inflation factor was used to
identify categories of colinear variables based on a cutoff value of 10. The multivariate model was
determined by removing colinear variables as well as variables found to be redundant during a priori
exploratory analyses.

TABLE 4 Primer/probe sets used for the detection of total V. parahaemolyticus (tlh) and
clinical strains (trh/tdh)

Name Sequence and probe(s)

tlh_F ACTCAACACAAGAAGAGATCGACAA
tlh_R GATGAGCGGTTGATGTCCAA
tlh_TXRD TxRED-CGCTCGCGTTCACGAAACCGT-3BHQ_2
trh_F TTGCTTTCAGTTTGCTATTGGCT
trh_R TGTTTACCGTCATATAGGCGCTT
trh133-23 TET-AGAAATACAACAATCAAAACTGA-MGBNFQ
tdh_F TCCCTTTTCCTGCCCCC
tdh_R CGCTGCCATTGTATAGTCTTTATC
tdh269-20 FAM-TGACATCCTACATGACTGTG-MGBNFQ
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The results of the models are reported in their exponentiated form, so as to be interpreted as relative
change in the geometric mean (RCGM). Generalized linear hypothesis testing for linear combinations of
the B-spline estimates was also performed.

Spatial and temporal analyses. To infer large-scale spatial trends, the Chesapeake Bay tidal waters
were split into 10 separate aggregations of the Chesapeake Bay Program’s analytical segmentation
scheme (45) (Fig. 1). Geographic variation of residuals was mapped to assess the lack of fit by monitoring
station. The residuals were also evaluated by season and year. Models were compared using the Akaike
information criterion (AIC) to assess whether the addition of space/time variables (main effect and
interaction) significantly improved the model fit and to evaluate the change in regression estimates as
an indication of unmeasured confounders. Models were stratified by year, season, or region to determine
if there was substantial effect modification of environmental associations. When such changes were
observed, formal statistical interaction terms were added to the model.

Residual spatial variation (i.e., spatially dependent regression residuals) can be a concern for regression
modeling, as such dependence would violate one of the underlying assumptions of residual indepen-
dence. Semivariograms, a tool from the field of geostatistics (46), were estimated for model residuals to
diagnose residual spatial variation. Chesapeake Bay water distances were used in semivariogram analyses
to better adhere to the complex geometry of the Bay, the details of which have been reported elsewhere
(47).

Mapping and spatial data integration were performed in ArcGIS version 10.3 (48). All statistical
analyses were performed in R statistical software (49) using the survival package for interval-censored
regression modeling (50, 51), ggplot2 for data visualization (52), and multcomp for B-spline analysis (53),
as well as a number of additional packages for analysis support (54–66).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AEM
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